Transcriptomic Signatures of Ash (Fraxinus spp.) Phloem
نویسندگان
چکیده
BACKGROUND Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. METHODOLOGY AND PRINCIPAL FINDINGS Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. CONCLUSIONS AND SIGNIFICANCE The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.
منابع مشابه
A predictive model for detection of Agrilus planipennis (Col., Buprestidae) larvae in girdled ash (Fraxinus spp.)
A predictive model for detection of Agrilus planipennis (Col., Buprestidae) larvae in girdled ash (Fraxinus spp.)A predictive model for detection of Agrilus planipennis (Col., Buprestidae) larvae in girdled ash (Fraxinus spp.)" (2010). USDA Forest Service / UNL Faculty Publications. Paper 153. A predictive model for detection of Agrilus planipennis (Col., Buprestidae) larvae in girdled ash (Fra...
متن کاملEffectiveness of differing trap types for the detection of emerald ash borer (Coleoptera: Buprestidae).
The early detection of populations of a forest pest is important to begin initial control efforts, minimizing the risk of further spread and impact. Emerald ash borer (Agrilus planipennis Fairmaire) is an introduced pestiferous insect of ash (Fraxinus spp. L.) in North America. The effectiveness of trapping techniques, including girdled trap trees with sticky bands and purple prism traps, was t...
متن کاملHost selection and feeding preference of Agrilus planipennis (Coleoptera: Buprestidae) on ash (Fraxinus spp.).
We studied the host selection behavior and feeding preference of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A. planipennis is an exotic forest insect pest native to Asia that was discovered in North America in 2002 and is causing widespread mortality of ash trees (Fraxinus spp.) in southeast Michigan and surrounding states. We compared host selection and fee...
متن کاملFeeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.
The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient trans...
متن کاملCharacterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior
Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Su...
متن کامل